Search results for "internal variability"
showing 4 items of 4 documents
Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research
2014
Malanotte-Rizzoli, Paola ... et. al.-- 76 pages
Impact of internal variability on projections of Sahel precipitation change.
2017
12 pages; International audience; The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920–2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variabilit…
Pluviométrie et circulation atmosphérique simulées par le modèle régional WRF en Afrique australe : sensibilité à la physique et variabilité interne
2011
This study evaluates the capability of the regional climate model WRF to simulate Southern African rainfall and associated atmospheric circulation, particularly over South Africa, a country covered by a dense network of in situ observations. Three sets of simulations are performed at a 35km horizontal resolution during the core of the austral rainy season (December to February: DJF) with 6-hourly forcings provided by ERA40 reanalysis. The first set quantifies sensitivity of the simulated climate to the parameterizations of atmospheric convection, planetary boundary layer and microphysics. The retained case study (DJF 1993-1994: DJF94) is representative of the South African rainfall climatol…
How physical parameterizations can modulate internal variability in a regional climate model
2012
Abstract The authors analyze to what extent the internal variability simulated by a regional climate model is sensitive to its physical parameterizations. The influence of two convection schemes is quantified over southern Africa, where convective rainfall predominates. Internal variability is much larger with the Kain–Fritsch scheme than for the Grell–Dévényi scheme at the seasonal, intraseasonal, and daily time scales, and from the regional to the local (grid point) spatial scales. Phenomenological analyses reveal that the core (periphery) of the rain-bearing systems tends to be highly (weakly) reproducible, showing that it is their morphological features that induce the largest internal …